Tracking in LArSoft

LBNE Physics Tools Meeting Mar. 9, 2012

H. Greenlee

Outline

- The LArSoft global coordinate system.
- Accessing detector and geometry information.
- RecoBase objects for tracking.
- Tracking strategies.
- Track calorimetry.
- Tasks.

The LArSoft Global Coordinate System

• Electrons drift in the x direction.

Accessing Detector and Geometry Information

- Geometry service provides geometric information about specific components.
 - CryostatGeo Information about one cryostat.
 - TPCGeo Information about one TPC.
 - PlaneGeo Information about one readout wire plane.
 - WireGeo Information one readout wire.
- LArProperties service.
 - Drift velocity.
- DetectorProperties service.
 - Sampling rate.
 - Trigger time offset.

RecoBase Objects Used for Tracking

• Hit

- Measures drift time of one charge deposition on one wire.
- Drift time $\rightarrow x$.
- Wire number $\rightarrow z \cos \theta + y \sin \theta$.

SpacePoint

- Combination of two or more Hits are used to reconstruct 3D space point in global coordinate system (x,y,z).

Reconstructing Space Points from Hits

- Each Hit contains two degrees of freedom: (time, wire position).
- Two Hits in different views contain four degrees of freedom.
 - -(x,y,z) + 1C.
 - 1C = time difference of Hits.
- Three Hits in different views contain six degrees of freedom.
 - -(x,y,z) + 3C.
 - 2C = time difference of Hits.
 - 1C = spatial separation of wires.

The Parallel Track Problem

Why LAr TPC ≠ Electronic Bubble Chamber

- It is not possible to reconstruct a track traveling parallel to wire planes in 3D because there is no way to match Hits from different views.
 - Time difference information is useless (time difference is the same for each combination of Hits).
 - Space separation doesn't save you either. Since every wire (over a wide range) has a Hit, space-compatible triplets of wires fill the yz plane densely.
- What does save you (hopefully) is that the track will bend or scatter out of the plane eventually.

Space Point Reconstruction Example (MicroBooNE single muon)

Wire-Time View (Hits)

Ortho 3D View (SpacePoints)

Strategies for 3D Track Reconstruction

- 2D track reconstruction.
 - Find 2D tracks in each view using Hits as input.
 - Combine views to make 3D tracks.
 - Argoneut used this strategy.
- 3D track reconstruction using SpacePoints.
 - First reconstruct all possible SpacePoints using Hits as input.
 - Find 3D tracks using SpacePoints as input.
- 3D track reconstruction using Hits.
 - Reconstruct 3D tracks directly from Hits.

Tracking in Argoneut

- Standard Reco (job/standard_reco.fcl) contains the following track reconstruction modules which were used for argoneut reconstruction.
 - HoughLineFinder.
 - 2D track reconstruction using Hough Transform (histogram method).
 - LineMerger.
 - Combine 2D track segments into larger 2D tracks.
 - Track3Dreco.
 - Combine 2D tracks in different views into 3D tracks.
- These modules assume straight tracks, and therefore don't work well with larger TPCs (even nonmagnetic ones).
- The 2D track reconstruction strategy could still be viable without the assumption of straight tracks (not being worked on).

3D Kalman Filter for Space Points

- Module Track3DKalmanSPS (Eric Church) implements 3D track reconstruction using the Kalman Filter algorithm with reconstructed SpacePoints as input.
 - SpacePoints are reconstructed from Hits using SpacePointService service.
 - Based on Genfit general purpose Kalman Filter software package.
- Module is partly working.
 - No real solution as yet for parallel track problem (how to choose the correct space points among the large combinatoric background).

3D Kalman Filter for Hits

- I have been urging larsoft to mount a new effort to develop a Kalman Filter algorithm for track reconstruction directly from Hits. I believe such an effort will be mounted.
 - This approach will avoid the combinatoric fake aspect of the parallel track problem, and should handle the degradation of 3D resolution as well as it can be handled.
 - No code has been written as yet.

Track Calorimetry (dE/dx)

• Ornella Palamara has been studying this for argoneut data – should extrapolate to other LAr TPCs (once we have tracks).

Tasks (Effort Needed)

- There is as yet no out-of-box working larsoft track reconstruction for large TPCs. More effort could be used in any of the three track reconstruction strategies mentioned earlier.
 - I believe the 2D/Hit and 3D/Hit strategies are the most promising,
 but the 3D/SpacePoint strategy is not dead either.
 - Only the 3D/SpacePoint strategy (Track3DKalmanSPS) has been tried so far.
 - There is still room to try to develop new ways of choosing or merging reconstructed space points.
- Vertex reconstruction (2D or 3D). I would give higher priority to 3D vertex reconstruction, since we expect to have 3D tracks.
 - No one working on it.

Tasks (Cont.)

- Track calorimetry.
- Using multiple scattering and range to measure momentum in nonmagnetic LAr TPC.

Summary

- RecoBase objects used as input for track reconstruction.
 - Hits.
 - SpacePoints.
- 3D reconstruction of SpacePoints from Hits.
 - Parallel track problem.
- Track reconstruction strategies.
 - 2D/Hit.
 - 3D/SpacePoint.
 - 3D/Hit.
- Track calorimetry.
- Tasks (where you can contribute).